Buen tiempo y protección solar

El buen tiempo se está resistiendo a llegar este año. Los que tenemos ventanas aislantes hemos estado bien protegidos durante todo el invierno y hemos ahorrado mucha energía en calefacción. Sabemos y deseamos que el buen tiempo está a la vuelta de la esquina.  Cualquier día de estos llegará un calor brusco y seco, y también nos podemos preguntar cómo nos protegen las ventanas de nuestro hogar para evitar que ese calor se nos meta en casa y tengamos poner los equipos de aire acondicionado a funcionar.

Dejando a un lado otros elementos de la envolvente de nuestra vivienda, y centrándonos en las ventanas, la temperatura exterior pasa al interior de nuestra casa principalmente a través de dos factores. El primero es por la transmisión térmica. Para reducir este factor, necesitamos al igual que en la época fría tener ventanas aislantes con el valor U más reducido posible.  Nuestras ventanas tienen que tener el menor valor U posible y así nos aíslan tanto en invierno como en verano.

Pero hay un segundo factor, que es la transmisión de calor a través de la radiación solar que penetra en nuestra vivienda a través de nuestras ventanas.

Para reducir el impacto de la radiación solar en las ventanas, debemos conocer las diferentes formas de poder actuar sobre ellas. De esta forma podremos mantener nuestra casa «fresquita» incluso en épocas de mucho calor, o por lo menos con una dependencia de aire acondicionado muy baja,  lo que nos supondrá un considerable ahorro para nuestro bolsillo.

Primero debemos saber que la radiación solar, depende tanto de la ubicación donde esté nuestra vivienda como de la orientación de fachada o fachadas. Pero estos factores, una vez que tenemos ya nuestra casa elegida y comprada, no podremos hacer nada sobre ellos.

Posición sol en el cielo

En verano tenemos más horas de luz, el sol sale antes y también anochece más tarde y la altura es mayor que en invierno. Por eso, para estar «fresquitos» lo ideal en verano sería tener alguna habitación orientada al norte para no recibir la luz solar directa. En cambio para el invierno esta orientación nos da como resultado habitaciones más frías.

En España la ventana normalmente está instalada enrasada con la zona interior de la fachada. Este hecho ya de por si nos da una buena protección solar ya que hace que los rayos solares entren directamente durante menos horas al día. En países del norte de Europa, con menos horas solares, precisamente para aprovechar más el sol las ventanas se instalan al exterior de las fachadas.

Pero aparte de la protección propia de propio edificio siempre podemos instalar otro tipo de protección adicional a la ventana.  Hay varias soluciones. Muchas de ellas están pensadas para el exterior y otras para el interior.  Entre las soluciones de exterior puede ser colocar un toldo, que suele ser uno de los métodos más eficaces por estar separado de la ventana y evita que los rayos solares incidan directamente sobre las ventanas.

También es muy común sobre todo en zonas del mediterráneo, la colocación en las ventanas de unas contraventanas.  En este caso debemos destacar que son mucho más eficaces si estas son de color claro y si son de PVC. Las contraventanas de PVC permitirán que el aire que circule del exterior al interior, en el caso de tener la ventana abierta, entre mucho más fresco que en el caso de las mallorquinas de aluminio que hacen el efecto radiador, calentando el aire exterior y pasándolo caliente al interior.

Lo más común y también muy eficaz en nuestro país es el cajón de persiana. Tenemos también una barrera exterior contra la radiación solar directa, nos permite además controlar la luz interior, y además es fácilmente manejable por el usuario. Es también cada vez más común la domotización de los cajones de persiana y el añadido de sistemas de eficiencia energética.

Existen algunos edificios con sistema de protectores de lamas exteriores verticales u horizontales. Esto suele verse más en edificios singulares con fachada acristalada. Incluso algunos sistemas permiten cambiar la orientación de las lamas para ajustarlas según la época del año y la hora.

Se pueden encontrar soluciones que pasan por instalar láminas de protección solar que reducen la entrada de los rayos en la estancia y reducen por lo tanto la entrada de calor.  Las hay tanto para interior como para exterior. Aunque estas soluciones muchas veces son ofertadas para que el mismo usuario las instale, son poco recomendables por su dificultad de instalación,  y si esta no es realizada de forma adecuada no suelen quedar bien estéticamente.

Hay otras muchas soluciones para el interior, tales como la instalación de cortinas, persianas venecianasestores, etc. Pero estas soluciones son menos eficaces ya que buena parte de la radiación ya ha entrado en el interior.

Además de todos estos elementos que pueden ayudar a reducir la radiación solar, el más importante es sin duda el que va integrado en la ventana: el vidrio.   Los vidrios llevan tratamientos en sus capas que lo que hacen es reducir la cantidad total de radiación que pasa a través del mismo. Es lo que se conoce con el nombre factor solar  (g) y cuanto menor es este factor mayor es la cantidad de energía rebotada al exterior y que impide que entre al interior.  No es sencillo aconsejar el mejor vidrio posible para su vivienda ya que el que podía ser el mejor para el verano, probablemente no lo sea para el invierno y como no vamos a cambiar de vidrio cada temporada, lo mejor es que un buen profesional haga un estudio de sus necesidades, orientación de fachada y le aconseje el mejor vidrio para cada caso.

protección solar vidriovidrio inteligente ahorro

Estamos deseando que llegue el calor y ya sabemos también cómo prepararnos para ahorrar energía también en verano.

Protección solar y aislamiento de ventanas

Vamos a exponer en detalle, de  la información del «Manual de Protección Solar del cerramiento (Persianas, toldos y textiles)«, los parámetros a tener en cuenta en la protección solar de las ventanas.

En muchos artículos de nuestro blog, explicamos de forma sencilla las buenas propiedades aislantes de las ventanas de PVC. Este artículo, es de carácter más técnico y explica en detalle el cálculo de la protección solar del hueco, teniendo en cuenta los tres factores que son la transmitancia térmica, el factor solar y la transmitancia luminosa.

 

1.2. PARÁMETROS DE LA PROTECCIÓN SOLAR

A la hora de evaluar la protección solar en el hueco de un edificio, existen diferentes parámetros que ayudan a evaluar el comportamiento de los materiales / sistemas en relación a distintos parámetros: iluminacióneficiencia energéticavisión, etc. Estos parámetros se evalúan para elementos individuales (ej. el acristalamiento) o conjuntos de elementos (ej. acristalamiento + tejido, marco + acristalamiento + cajón, etc).

Tres son los parámetros que tienen especial importancia en la caracterización de un sistema de protección solar:

• La transmitancia térmica, Ug (en W/m2K).

Describe la transferencia de calor a través del vidrio, o del conjunto de elementos que conforman el sistema del hueco, debida a la diferencia de temperatura entre el lado exterior e interior del acristalamiento o del conjunto.

El valor U (medido en W/m2K) representa las pérdidas o ganancias energéticas a través de la ventana o el conjunto de elementos del hueco. Para una ventana sencilla (sin persiana) este coeficiente depende del valor U del acristalamiento (Ug) y del valor U del marco (Uf) y de la unión entre el acristalamiento y el marco (Ψg).
La transmitancia térmica de la ventana puede evaluarse mediante distintos métodos:

– La tabla F.1de la Norma UNE-EN ISO 10077-1,
o por cálculo utilizando:
– la norma UNE-EN ISO 10077-1 o,
– la norma UNE-EN ISO 10077-1 y UNE-EN ISO 10077-2
o por el método de caja caliente (ensayo) basado en:
– la norma UNE-EN ISO 12567-1 o
– la norma UNE-EN ISO 12567-2

Según sea apropiado.
El apartado 5 de la norma UNE EN ISO 10077-1 define la transmitancia térmica de la ventana sencilla, según la siguiente fórmula:

 

transmitancia térmica formula ventana

Donde: Ag = es la superficie del acristalamiento (m2). Ug = es la transmitancia térmica del acristalamiento (W/m2K). Af = es la superficie del marco (m2). Uf = es la transmitancia térmica del marco (W/m2K). lg = es el perímetro total del acristalamiento (m). Ψg = es el coeficiente de transmisión térmica lineal debido a los efectos térmicos combinados del marco, el vidrio y el intercalario, en el caso del doble acristalamiento (UVA) (W/mK).

En el caso de ventanas que incorporan cajón de persiana el cálculo de la transmitancia térmica del conjunto es el siguiente:

transmitancia térmica fórmula ventana cajón

 

UH la transmitancia térmica del hueco (ventana, lucernario o puerta) [W/m2K];
UH,v la transmitancia térmica del acristalamiento [W/m2K];
UH,m la transmitancia térmica del marco [W/m2K];
UH,p la transmitancia térmica de la zona con panel opaco o cajón de persiana [W/m2K];
Ψ v la transmitancia térmica lineal debida a la unión entre marco y acristalamiento [W/m2K];
Ψ p la transmitancia térmica lineal debida a la unión entre marco y paneles opacos o cajón de persiana [W/m2K];
AH,v el área de la parte acristalada [m];
AH,m el área del marco [m];
AH,p el área de la parte con panel opaco o cajón de persiana [m ];
l v la longitud de contacto entre marco y acristalamiento [m];
l p la longitud de contacto entre marco y paneles opacos o cajón de persiana [m];

 

Un sistema de protección solar desplegado completamente por delante de la ventana genera una cámara de aire adicional caracterizada por una resistencia térmica adicional, designada como ΔR (medida en m2K/W). El valor de ΔR se calcula de acuerdo con la norma UNE-EN 13125 y depende principalmente de la permeabilidad al aire del dispositivo y de la resistencia térmica de la cortina (designada como Rsh). El término cortina puede hacer referencia por ejemplo a un paño de persiana.
El efecto de la resistencia térmica adicional de una persiana o celosía en la ventana se calcula según la siguiente fórmula:

Uws = 1/((1/Uw)+ΔR)

Donde, Uw es la transmitancia térmica de la ventana y ΔR es la resistencia térmica adicional debida a la cámara de aire comprendida entre la ventana y el sistema de protección. Esta fórmula se define en la norma UNE-EN ISO 10077-1. Para una ventana dada, puede utilizarse para evaluar la mejora del valor U de la ventana provista de una persiana o celosía en posición desplegada.
La siguiente tabla aporta ejemplos de cálculo para tres valores diferentes de ΔR y tres tipos de ventanas. Los valores de ΔR considerados son:
• 0,08 m2K/W, por ejemplo una persiana exterior muy permeable
• 0,15 m2K/W, por ejemplo una persiana estándar enrollable de aluminio
• 0,25 m2K/W, por ejemplo una persiana enrollable estanca al aire

 

valores u ventanas protección solar

 

La persiana o la celosía disminuyen en todos los casos el valor de U de la ventana, lo que reduce las pérdidas de calor en invierno.

• El factor solar, g.

Indica el porcentaje de la energía solar incidente que finalmente se transmite al interior del recinto en forma de calor, siendo la suma de la transmisión energética (TE) directa y la parte reemitida al interior después de haberse calentado el vidrio. Cuando se trata del factor solar del acristalamiento y una protección solar adicional (por ejemplo un tejido), el parámetro a considerar es el gtot.

Como se indicaba antes, el valor g es el factor solar del acristalamiento, el valor gtot es el factor solar de la combinación de un acristalamiento y de un sistema de protección solar.
Se define:
 Factor solar: es el cociente entre la radiación solar a incidencia normal que se introduce en el edificio a través del acristalamiento y la que se introduciría si el acristalamiento se sustituyese por un hueco perfectamente transparente.
• Factor de sombra: es la fracción de la radiación incidente en un hueco que no es bloqueada por la presencia de obstáculos de fachada tales como retranqueos, voladizos, toldos, salientes laterales u otros.

El valor, tanto de g como de gtot, es un valor entre 0 y 1 (0 significa que no se transmite radiación al interior del recinto y 1 significa que se transmite toda la radiación).
El valor de g del acristalamiento se mide según la norma UNE-EN 410. Existen dos métodos para el cálculo del gtot de un sistema de protección solar asociado a un acristalamiento:
– Método simplificado dado en la norma UNE-EN 13363-1 (dispositivos de protección solar combinados con acristalamiento. Cálculo del factor de transmitancia solar y luminosa. Parte 1: Método simplificado).
– Método detallado dado en la norma UNE-EN 13363-2 (dispositivos de protección solar combinados con acristalamiento. Cálculo del factor de transmitancia solar y luminosa. Parte 2: Método de cálculo detallado).
En ambos métodos se tienen en cuenta las propiedades del acristalamiento y del material que constituye el dispositivo de protección solar.
Es habitual que los fabricantes de protecciones solares con tejidos aporten tablas de gtot para combinaciones de los tejidos con 4 tipos estándar de acristalamiento, denominados A (vidrio simple), B (vidrio doble), C (vidrio doble bajo emisivo) y D (vidrio doble bajo emisivo con control solar).
En el método simplificado de la norma UNE-EN 13363-1, se tiene en consideración el valor de U y el valor de g del acristalamiento y la transmitancia de energía y reflectancia del sistema de protección solar.
Las fórmulas empleadas son las siguientes:

Fórmulas transmisión energía factor solar

 

Donde:
te es la transmitancia solar de la persiana o celosía.
re es la reflectancia solar de la persiana o celosía.
ae es la absortancia de la persiana o celosía.
g es el factor solar del acristalamiento.
G1, G2 y G3 son valores fijos dados en la norma.
Estas fórmulas pueden aplicarse solo si la transmitancia y la reflectancia solar del dispositivo de protección solar están dentro de los siguientes rangos:
0 ≤ te ≤ 0,5 y 0,1 ≤ re ≤ 0,8
Y con el requisito adicional de que el factor solar del acristalamiento esté comprendido entre 0,15 y 0,85.

 

• La transmitancia luminosa, T (TLE).

Indica el porcentaje de luz visible que se transmite a través del acristalamiento o del conjunto de acristalamiento y protección solar desde el exterior al interior.

Como con el factor solar, es necesario distinguir entre la transmitancia visual del acristalamiento de forma independiente y de un acristalamiento en una ventana y utilizado con un sistema de protección solar (la designación en todos los casos es la misma, TLE).
El valor de la transmisión es un valor entre 0 y 1 (0 significa que no se transmite luz al interior del recinto y 1 significa que se transmite toda la luz). También puede expresarse en tanto por ciento.
Al igual que el factor solar, la aportación de luz natural se ve reducida por la instalación de elementos de protección solar.
Las normas para su cálculo son las mismas que para el factor solar: UNE-EN 410 para el acristalamiento y dos posibilidades para un sistema de protección solar combinado con un acristalamiento:
– Método simplificado dado en la norma UNE-EN 13363-1.
– Método detallado dado en la norma UNE-EN 13363-2.
En el caso del cálculo simplificado, las fórmulas para el cálculo son las siguientes:
– Sin persiana ni celosía, la transmisión que corresponde a la superficie del vidrio.

Fórmulas transmisión luminosa

 

Donde: tv es la transmitancia luminosa del acristalamiento. tv,blind es la transmitancia luminosa de la persiana o celosía. rv es la reflectancia luminosa del lado del acristalamiento sobre el que llega la radiación incidente. r’v es la reflectancia visual de lado opuesto del acristalamiento a la radiación incidente. Fuente: Manual de Protección Solar del cerramiento (Persianas, toldos y textiles) de ASEFAVE.

Consideraciones sobre las soluciones de protección solar

Continuamos la serie de artículos para dar a conocer la información del «Manual de Protección Solar del cerramiento (Persianas, toldos y textiles)», en este caso, varias consideraciones sobre las soluciones para la protección solar.

Hemos explicado en varios artículos de nuestro blog, de forma más sencilla lo que el «Manual de Protección Solar» de Asefave, explica a continuación de una forma más técnica. Creemos importante resaltar su contenido para los más técnicos en la materia.

Flujos de energía

Flujos de energía ventanas-figura2

La figura 2 muestra los flujos de energía más importantes en una situación con una combinación de acristalamiento y protección solar exterior.

La flecha amarilla representa la radiación solar de onda corta. A medida que atraviesa cada capa, una parte de la radiación se transmite, otra se refleja y otra se absorbe. Las flechas negras indican la absorción, esta energía provoca el incremento de temperatura en el vidrio y en la protección solar. Parte se pierde en el ambiente en forma de radiación térmica hacia ambos lados de la protección solar (de onda larga, flechas rojas) y de convección (flechas naranjas).

Las protecciones solares pueden también incorporarse en el doble acristalamiento en el interior de la cámara, pero en esta posición es necesario estudiar detenidamente tanto las consecuencias sobre los vidrios (pueden incrementar el riesgo de rotura por estrés térmico y por tanto obligar a utilizar vidrios tratados térmicamente) así como en la estanqueidad de la cámara y la temperatura interior de la misma, pudiendo afectar a los sellantes.

En resumen, la hoja interior transmite energía de tres maneras diferentes al recinto:
1. Directamente, la radiación de onda corta, qt
2. La radiación de onda larga secundaria emitida por la hoja interior, qri
3. El calor de convección generado por la hoja interior, qci

Siendo qi la radiación incidente, el factor solar se obtiene como:

Flujos energía fórmula

Con esta fórmula, se asegura que el factor solar es siempre superior a la transmitancia solar.
En la norma UNE-EN 410,

norma une en 410

se denomina factor secundario de transferencia interna de calor.

 

Sobre el factor solar, gtot, es importante señalar lo siguiente, que se ha de tener en cuenta a la hora de efectuar cálculos detallados:
– El factor solar depende del ángulo de incidencia de la radiación solar.
– En el caso de persianas venecianas, el factor solar depende principalmente del ángulo de la lama y del ángulo de incidencia (tanto vertical como azimutal)
– El factor solar que normalmente se indica en las especificaciones de los productos es con incidencia normal. En el caso de persianas venecianas, el factor solar se indica con la persiana cerrada.

En la figura 3 se muestran los flujos de energía más importantes en el caso de una combinación de un acristalamiento con protección solar interior.

En este caso, el flujo primario de la radiación de onda corta atraviesa el vidrio. La energía llega al interior del recinto. Dado que el vidrio no es transparente a la radiación infrarroja de onda larga emitida por la protección solar, el calor queda atrapado en el interior del recinto (efecto invernadero).
La protección solar por el interior solo resulta eficiente para el control del calor si es altamente reflectiva o si tiene un elevado valor de aislamiento y va provista de sellados laterales eficientes. En este último caso, el calor queda retenido en la cámara entre la ventana y la protección. La temperatura en esta cavidad se puede incrementar hasta valores elevados y puede provocar la rotura del vidrio, si este no está templado. Este efecto se puede eliminar si el aire caliente se disipa hacia el exterior.

Flujos de convección

La calidad de los sistemas de protección solar desde el punto de vista del control del calor viene determinada por la proporción de calor que se transmite al interior mediante convección. Es preferible que la mayor parte de la energía absorbida por el sistema de protección solar se transmita al recinto como radiación térmica, ya que esta radiación será absorbida por la masa del edificio. De esta forma, la temperatura del recinto se incrementa ligeramente debido a la inercia térmica de la masa del edificio. Si la mayor parte se transmite por convección, la temperatura del recinto sube rápidamente.
El factor de convección CF es un número adimensional entre 0 y 1 que representa la parte de energía transmitida al recinto mediante convección y puede definirse como:

Flujos convección fórmula

De modo similar, se puede definir una fracción de radiación RF y una fracción directa DF sustituyendo qci en el numerador por qri y qt respectivamente.
Si se comparan sistemas de protección solar interiores y exteriores, los sistemas exteriores, a priori, tienen mejores características de protección que los interiores en relación al factor solar gTOT. No obstante, existen muy buenos sistemas interiores. Cuando se comparan con los sistemas interiores, o incluso los que van entre las hojas del doble acristalamiento, debe tenerse en cuenta, junto con el factor solar, el factor de convección.
Por ejemplo, si se consideran un sistema de protección exterior y otro interior, ambos con un factor solar gTOT= 0,2, y los factores de convección son, respectivamente, 0,05 y 0,25, para el sistema exterior 0,05×0,2=0,01 (1%) del calor solar pasaría al interior del recinto por convección. Para el sistema interior, el porcentaje sería del 5% (0,25 x 0,02= 0,05).

Efectos de la radiación solar en los flujos de aire de los recintos

La solución más habitual de ventilación en los edificios es la ventilación mixta. Para conseguir bajas velocidades del aire en los recintos con ocupación, se necesitan bajos caudales de aire. Así, para cumplir con las necesidades de acondicionamiento, la diferencia de temperaturas entre el aire de entrada y el de salida suele ser de 10 º C.
Las ventanas tienen una influencia significativa en el acondicionamiento de los recintos. La capacidad de acondicionamiento del aire depende principalmente de la orientación del edificio y el sistema completo de protección solar (conjunto del acristalamiento y los dispositivos de protección solar, exteriores o interiores). De hecho, la situación geográfica del edificio desempeña un papel menos importante del que se podría suponer: las necesidades de acondicionamiento son similares en Europa septentrional y meridional, para una misma configuración de acristalamiento, orientación y protección solar.
La distribución del aire en los recintos es el resultado de una compleja interacción entre el caudal de ventilación y el flujo de convección generado por aparatos, ocupantes, temperatura de la superficie de la ventana y equipamiento, en el caso de las oficinas. Depende de diversos factores: disposición de los equipos de acondicionamiento, caudal de ventilación, distribución de los puestos de trabajo, potencia de los equipos, etc. La distribución del aire es muy sensible a los incrementos de las ganancias de calor en el recinto.

Temperatura superficial de la ventana

En caso de doble acristalamiento, un sistema de protección solar por el exterior normalmente reduce la temperatura de la hoja interior y más si contamos con un vidrio exterior con control solar. La temperatura de la hoja exterior, por el contrario, puede ser más alta aún con protección solar exterior. Ello es debido a la transferencia de calor por radiación y convección entre la protección y la hoja exterior. El uso de protecciones solares exteriores que sombrean parcialmente el vidrio puede implicar la necesidad de la utilización de vidrios templados, para evitar la rotura por choque térmico.
En la fase de diseño de un edificio, hay que tener en cuenta el efecto de la asimetría de la temperatura de radiación en la ventana y su efecto sobre el confort interior.
En general, si se utiliza un sistema de protección solar por el interior, la temperatura es más alta ya que la temperatura superficial de la protección es más alta que la de una ventana sin protección solar interior. Mientras que este efecto se ha de evitar en verano, puede ser deseable en invierno (calentamiento pasivo).
La instalación de protecciones solares interiores puede exigir el templado del vidrio para evitar posibles roturas de origen térmico. En el caso de utilizar vidrios recocidos (no templados) no deben situarse las protecciones solares interiores muy próximas al acristalamiento o elementos que impidan la evacuación de la energía acumulada por efecto de la protección solar. Siempre es preferible situar protecciones solares en el exterior.

Influencia de la protección solar sobre las necesidades de iluminación

El consumo de energía debido a la iluminación artificial puede representar un porcentaje elevado de la energía eléctrica consumida en un edificio típico de oficinas. Un aprovechamiento óptimo de la luz natural puede suponer un ahorro significativo en la factura. En una situación ideal, la luz natural debería ser regulable de modo continuo de forma que se consigan los flujos de luz necesarios para el trabajo. En la práctica, el control de la luz natural se complementa con sensores de ocupación.
Dado que los sistemas de protección solar reducen el flujo de radiación solar en los recintos, y aunque protegen del deslumbramiento también reducen la cantidad de luz. Hay que considerar el equilibrio entre el ahorro de energía en climatización de los edificios y el incremento de consumo debido a la iluminación artificial. En la práctica, se ha comprobado que un sistema de protección solar automatizado correctamente programado no supone un incremento de consumo por iluminación artificial.
Se define la autonomía en luz natural como el porcentaje de horas durante las cuales la luz natural es adecuada para satisfacer las necesidades de iluminación del ser humano. La protección solar, en general, influye en la autonomía en luz natural de un recinto, especialmente para las zonas más alejadas de la ventana.